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The dynamics of the vortex structures appearing in an oscillatory boundary layer
(Stokes boundary layer), when the flow departs from the laminar regime, is investi-
gated by means of flow visualizations and a quantitative analysis of the velocity and
vorticity fields. The data are obtained by means of direct numerical simulations of the
Navier–Stokes and continuity equations. The wall is flat but characterized by small
imperfections. The analysis is aimed at identifying points in common and differences
between wall turbulence in unsteady flows and the well-investigated turbulence struc-
ture in the steady case. As in Jimenez & Moin (1991), the goal is to isolate the basic
flow unit and to study its morphology and dynamics. Therefore, the computational
domain is kept as small as possible.

The elementary process which maintains turbulence in oscillatory boundary layers
is found to be similar to that of steady flows. Indeed, when turbulence is generated,
a sequence of events similar to those observed in steady boundary layers is observed.
However, these events do not occur randomly in time but with a repetition time scale
which is about half the period of fluid oscillations. At the end of the accelerating
phases of the cycle, low-speed streaks appear close to the wall. During the early
part of the decelerating phases the strength of the low-speed streaks grows. Then the
streaks twist, oscillate and eventually break, originating small-scale vortices. Far from
the wall, the analysis of the vorticity field has revealed the existence of a sequence of
streamwise vortices of alternating circulation pumping low-speed fluid far from the
wall as suggested by Sendstad & Moin (1992) for steady flows. The vortex structures
observed far from the wall disappear when too small a computational domain is
used, even though turbulence is self-sustaining. The present results suggest that the
streak instability mechanism is the dominant mechanism generating and maintaining
turbulence; no evidence of the well-known parent vortex structures spawning offspring
vortices is found. Although wall imperfections are necessary to trigger transition to
turbulence, the characteristics of the coherent vortex structures, for example the
spacing of the low-speed streaks, are found to be independent of wall imperfections.

1. Introduction
Quasi-coherent vortex structures are now considered to be ubiquitous features of

wall turbulence and they have been much investigated during the past few years,
providing a deep physical insight into the mechanisms controlling momentum, mass
and heat transfer close to rigid boundaries in turbulent flows (see the contributions
by Hussain 1986; Kline & Afgan 1988; Robinson 1991; Moin & Mahesh 1998).
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However, attention has been mainly devoted to steady flows and many aspects of
wall turbulence in unsteady flows are still unknown. The lack of a deep knowledge
of unsteady turbulence is largely due to the difficulties encountered when making
accurate measurements of turbulence characteristics in rapidly varying flows and in
tackling the problem by analytical means. Moreover, few attempts to numerically
simulate unsteady turbulent flows can be found into the literature, perhaps because
of the difficulties in triggering transition to turbulence (Spalart & Baldwin 1988;
Akhavan, Kamm & Shapiro 1991). However, unsteady flows are as important as
steady ones and the investigation of turbulence structure in accelerating and/or
decelerating flows may provide additional physical insight as well as raising additional
questions regarding the origin and development of wall turbulence. Moreover the
study of coherent vortex structures in unsteady flows, and in particular in oscillating
or pulsatile flows, is of relevance in many engineering fields like biofluid dynamics,
turbomachinery control, coastal engineering to cite a few.

In the present contribution we consider the unsteady boundary layer generated by
an oscillating flow close to a fixed rigid wall (Stokes boundary layer), which can be
considered as a prototype of unsteady boundary layers, and we investigate the vortex
structures which appear during transition from the laminar to the turbulent regime
and those characterizing wall turbulence at moderate values of the Reynolds number.

Previous studies of the Stokes boundary layer were concerned primarily with the
identification of transition between the laminar and turbulent regimes and the inves-
tigation of the average characteristics of turbulence. As summarized and discussed
in Vittori & Verzicco (1998) and Blondeaux & Vittori (1999), experimental results
seem to indicate that transition does not take place at a well-defined Reynolds num-
ber, but it is a continuous process characterized by the appearance of small flow
perturbations at a first critical value of the Reynolds number, which has not been
precisely identified. When the Reynolds number is increased and becomes larger
than a second critical value, these disturbances originate turbulence bursts, which
however appear only during the decelerating phases of the cycle. Indeed, during the
accelerating phases, the flow recovers a laminar-like behaviour. Further increases of
the Reynolds number lead turbulence to appear earlier and to pervade larger parts of
the cycle and eventually to be present throughout the whole cycle when the Reynolds
number exceeds a third critical value. Hence, on the basis of the experimental results,
four regimes can be identified: the laminar regime, the disturbed laminar regime, the
intermittently turbulent regime and the fully turbulent regime.

The theoretical investigation of Blondeaux & Vittori (1994) and the numerical
simulations of Spalart & Baldwin (1988), Verzicco & Vittori (1996) and Vittori &
Verzicco (1998) along with the experimental results suggest that wall imperfections
or other external sources of disturbances play a fundamental role in triggering the
appearance of turbulence in oscillatory flows. By analysing the Stokes boundary layer
over a wavy wall of small amplitude, Blondeaux & Vittori (1994) found that the flow
deviates from the laminar regime because of the growth of perturbations, which takes
place only at particular phases of the cycle due to a resonance mechanism which is
present only when the Reynolds number is larger than a critical value equal to about
100 (herein the Reynolds number is defined as Rδ = U∗0

√
2ν∗/ω∗/ν∗, where U∗0 and

ω∗ are the amplitude and the angular frequency of velocity oscillations far from the
wall and ν∗ is the kinematic viscosity of the fluid). This resonance mechanism leads to
an energy transfer from the basic flow to the perturbations, which is induced by the
wall waviness when the latter is characterized by a particular streamwise wavenumber
that depends on the value of the Reynolds number (receptivity mechanism).
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The analysis by Blondeaux & Vittori (1994) is two-dimensional and therefore it
provides a possible explanation for the mechanism leading to the appearance of the
first flow perturbations observed in the experimental investigations when Rδ exceeds
100; however, it cannot describe turbulence development and cannot explain the
differences between the disturbed laminar regime and the intermittently turbulent one
experimentally observed when the Reynolds number is larger than a critical value
between 500 and 600.

Two possible explanations of the inception of the intermittently turbulent regime
can be given. The first one is based on the numerical results by Akhavan et al.
(1991), who found that for values of Rδ larger than about 500, three-dimensional
perturbations can grow if a large two-dimensional wave pre-exists in the Stokes
flow. This large-amplitude wave might be generated, for example, by the resonance
mechanism described by Blondeaux & Vittori (1994). A second possible explanation
is provided by Wu (1992) who showed that the amplitudes of two- and three-
dimensional components of a small perturbation can develop a finite-time singularity.
This explosive growth of the perturbation is possible when the Reynolds number is
sufficiently large. Moreover the disturbance should be composed of a pair of oblique
waves of small amplitude ε and wavenumbers equal to α and ±√3α in the streamwise
and spanwise directions respectively plus a two-dimensional wave with wavenumber
2α and an amplitude of order ε4/3. The direct numerical simulations of Vittori &
Verzicco (1998) seem to support the first mechanism.

A first attempt to experimentally investigate vortex structures in an oscillatory
boundary layer at moderate values of the Reynolds number was made by Fishler &
Brodkey (1991) who suspended tracer particles in a fluid and took high-speed motion
pictures of their motions. The experiments were made in a straight, rigid pipe of
circular cross-section, where the flow was driven by the simple harmonic motion of
a piston. Therefore two parameters controlled the flow characteristics: the Reynolds
number Rδ and the Stokes parameter β defined by β = R∗/δ∗, where R∗ is the pipe
radius. The flat wall case is recovered when β tends to infinity. The results of Fishler
& Brodkey (1991) showed that in the intermittently turbulent regime, large vortex
structures occurred randomly in space, but their time development was deterministic.
The largest turbulent events were detected near or subsequent to the beginning of
the decelerating phases, and the observed vortex structures were similar to those of
steady flows such as presented by Corino & Brodkey (1969) and Nychas, Hershey &
Brodkey (1973). By visualizing the flow for β = 8.2 and Rδ = 1340, Fishler & Brodkey
(1991) found that the first event of the sequence was a local deceleration, with the
fluid near the wall moving slower than the fluid in the same position at a previous
time. Immediately after the local deceleration, large inflows towards the wall were
observed. This was the local acceleration event, which originated near the outer edge
of the wall region and upstream from the retarded region. Simultaneously with or
directly after the local acceleration event, the excitation event and the generation of
a transverse vortex took place. The excitation event was characterized by random
chaotic radial motions throughout the entire wall region. Transverse vortices always
occurred simultaneously with the excitation event. Moreover, during the time that
the wall region was in an excited state, ejections were observed. The ejection event
was characterized by a large amount of radial motion with the fluid simultaneously
moving downstream and away from the wall. Ejections were observed to occur at all
angles from the wall region, but most of them were observed to be perpendicular
to the wall or pointed in the downstream direction. Finally the flow returned to its
basic rectilinear motion (sweep event) until the next sequence of events. As previously
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pointed out, the coherent turbulent motions described above were observed for fixed
values of β and Rδ . However Fishler & Brodkey (1991) determined also how these
vortex structures varied with β and Rδ , showing in particular that turbulence tended
to disappear when β was increased.

A similar experiment was made by Sarpkaya (1993), who used a different apparatus
and, more importantly, investigated lower values of Rδ , thus clearly identifying the
dynamics of the observed vortex structures. In particular Sarpkaya (1993) used a long
cylindrical body immersed in a sinusoidally oscillating fluid which moved parallel
to the cylinder axis. The ratio between the radius R∗ of the cylinder and δ∗ was
large enough (R∗/δ∗ = 58) to consider the results obtained to be of significance
for the flow over a flat plate. For Rδ = 400, the flow was characterized by the
presence of unevenly spaced streaks of tracers which emerged toward the end of each
decelerating phase and then completely disappeared during the accelerating phase.
These streaks, which were assumed to indicate the presence of streamwise vortices,
remained perfectly straight, smooth and parallel with no visible interaction. When
the Reynolds number was increased (420 < Rδ < 460), other events took place. The
streaks interacted, moving towards each other and growing in amplitude, and then
tended to coalesce to form a single streak which became sinuous. Shortly thereafter,
the streak began to split into short segments which, in turn, began to lift. Moreover
parts of the original pair of streaks acquired larger amplitude and gave rise to ‘pockets’
(Falco 1991). Finally Sarpkaya (1993) argued the presence of hairpin or horseshoe
vortices which, as the velocity of the ambient flow increased, folded back, stretched
rapidly and became incoherent structures. When the Reynolds number was further
increased to about 460–490, a large number of vortices appeared towards the end
of the decelerating phases. Usually these turbulent structures did not survive during
the accelerating phases and the flow relaminarized. Further increases of the Reynolds
number (490–520) led to more numerous vortex structures which penetrated further
into the ambient flow. At higher Reynolds number, turbulence activity spanned over
larger times and larger areas, till at values of Rδ around 800 the identification of
coherent structures became difficult. Even at values of Rδ as large as 1800 there were
still some time intervals in the cycle where the flow was in a transitional state or in a
partially developed turbulent state.

At this stage it is worth pointing out that the visualization techniques used by
both Fishler & Brodkey (1991) and Sarpkaya (1993) do not allow a complete picture
of vortex dynamics. First, as pointed out by Sarpkaya (1993) himself, the results
obtained showed coherent structures along a particular plane while it would have
been most desirable to have views of the structures in all planes. However, unlike
the experiments with synthetic hairpins (see e.g. Acarlar & Smith 1987), the flow
structures in an oscillating flow look more irregular and do not necessarily repeat
themselves in the same volume of observation. Thus it is nearly impossible to produce
experimentally simultaneous views of a given structure in all possible planes. More-
over, flow visualizations at large Reynolds numbers become quite difficult because of
the large number of vortex structures and their short lifetime. Secondly, a great deal
of caution must be exercised in interpreting the streakline behaviour. An example has
been presented by Hama (1962) who showed that streaklines in a tanh-type shear
layer velocity profile perturbed by an unamplified travelling sinusoidal-velocity wave
may give rise to the roll-up of streaklines as if discrete vortices were present, when in
fact no such vortex structures were present.

In the present work the oscillatory flow over a flat wall is reproduced by means of
numerical simulations of the Navier–Stokes and continuity equations. As in Blondeaux
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& Vittori (1994), Verzicco & Vittori (1996) and Vittori & Verzicco (1998) the wall
is not perfectly flat but small imperfections are introduced in the wall profile. In
fact, as discussed by Spalart & Baldwin (1988) and Akhavan et al. (1991), when a
perfectly flat wall is considered, transition can be triggered only by inserting quite
large perturbations and for Reynolds numbers larger than those observed in the
experimental works. On the other hand, even a quite small waviness can induce the
presence of significant perturbations in a range of the Reynolds number for which
the disturbed laminar flow is experimentally observed and can generate turbulence
when the Reynolds number is larger than a critical value, which fairly well agrees
with experimental observations (Verzicco & Vittori 1996; Vittori & Verzicco 1998).
Therefore both the disturbed laminar and the intermittently turbulent regimes are
simulated.

The results concerning the critical values of the Reynolds number for which
the disturbed laminar regime and the intermittently turbulent regime appear are
presented in Vittori & Verzicco (1998), where the average flow characteristics are
also described. Hence, no further investigation of these quantities is made herein.
Rather, we investigate the vortex structures which appear in both the disturbed
laminar and intermittently turbulent regimes, in an attempt to isolate the basic unit
flow, to study its morphology and dynamics and to provide some physical insight
into the mechanisms controlling momentum, mass and heat transfer in oscillatory
boundary layers. Vortex structures are identified by visualizing the flow and analysing
the vorticity field. In addition, since the analysis of the isovorticity surfaces may be
considered not fully adequate to detect vortices, we also use the definition of vortex
structures proposed by Jeong & Hussain (1995) and we visualize the regions with two
negative eigenvalues of the symmetric tensor D2 +Ω2, where D and Ω denote the
symmetric and antisymmetric parts of the velocity gradient tensor respectively. As
discussed by Jeong & Hussain (1995), this definition captures the pressure minimum in
a plane perpendicular to the vortex axis at high Reynolds numbers and also accurately
defines vortex cores at low Reynolds numbers, unlike a pressure minimum criterion
which sometimes is used as an intuitive indicator of a vortex. The above approach
has revealed the same vortex structures identified by means of flow visualizations and
the analysis of the isovorticity surfaces.

In the disturbed laminar regime, the results obtained and in particular the structure
of the simulated coherent vortices depend on the characteristics of the wall imperfec-
tions. Significant perturbations of the basic flow appear only when a two-dimensional
wall waviness is present, the wavenumber of which is close to that predicted by Blon-
deaux & Vittori (1994). Moreover, by increasing the amplitude of the wall waviness
the critical value of the Reynolds number giving rise to the intermittently turbulent
regime can be decreased. On the other hand, in the intermittently turbulent regime,
turbulence is found to be independent of the characteristics of wall imperfections and,
once present, turbulence is self-sustaining. The results obtained show that the coher-
ent vortex structures appearing in the intermittently turbulent regime are similar to
those detected in steady boundary layers. However the sequence of events generating
turbulence does not take place randomly in time but is characterized by a repetition
time scale which is about half the period of fluid oscillations. In particular low-speed
streaks, which start to appear towards the end of the accelerating phases, have been
observed. Later, during the decelerating phases, the low-speed streaks oscillate, twist
and eventually break generating small-scale vortices which later, during the acceler-
ating phases, damp because of viscous effects. Moreover, the analysis of the vorticity
field in the region far from the wall has shown the existence of a sequence of short
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streamwise vortices of alternating circulation pumping low-speed fluid far from the
wall (Sendstad & Moin 1992). Finally, the present findings suggest that turbulence
in an oscillating boundary layer is generated and sustained by a streak instability
mechanism; no evidence of well-defined parent vortex structures spawning offspring
vortices is found. Further investigations need to be made to identify the characteristics
of the instability mechanism.

2. The problem and the numerical approach
As pointed out in the Introduction, we study the boundary layer generated close

to a wall by an oscillating pressure gradient which, outside the boundary layer, is
described by

∂P ∗

∂x∗1
= −ρ∗U∗0ω∗ sin(ω∗t∗),

∂P ∗

∂x∗2
= 0,

∂P ∗

∂x∗3
= 0, (1)

where x∗1, x∗2 and x∗3 indicate streamwise, vertical (or cross-stream) and spanwise
coordinates respectively and the average wall location coincides with the (x∗1, x∗3)-
plane. Hereinafter an asterisk is used to denote dimensional quantities. In (1) ρ∗ is
the constant density of the fluid, and U∗0 and ω∗ are the amplitude and the angular
frequency of fluid velocity oscillations induced by (1) far from the wall.

The wall is not perfectly flat but characterized by a small waviness and its profile
η∗ is given by the superposition of sinusoidal components

x∗2 = ε∗η(x∗1, x
∗
3) = ε∗

N∑
n=1

an cos(α∗nx
∗
1 + γ∗nx

∗
3 + ϕn), (2)

where ε∗an denotes the amplitude of the nth component which is characterized by
wavenumbers α∗n and γ∗n in the x∗1- and x∗3-directions respectively and by a phase ϕn.

Use is made of dimensionless variables defined as

t = t∗ω∗, x = (x1, x2, x3) =
(x∗1, x∗2, x∗3)

δ∗
,

u = (u1, u2, u3) =
(u∗1, u∗2, u∗3)

U∗0
, p =

p∗

ρ∗(U∗0 )2
.

 (3)

In (3) t∗ is time, u∗1, u∗2, u∗3 are the fluid velocity components along the x∗1-, x∗2- and
x∗3-directions respectively and δ∗ is the conventional thickness of the viscous boundary

layer close to the wall defined as
√

2ν∗/ω∗, ν∗ being the kinematic viscosity of the
fluid.

The problem is thus posed by the Navier–Stokes and continuity equations:

∂u

∂t
+
Rδ

2
∇ · (uu) = −Rδ

2
∇p− ix1

sin(t) + 1
2
∇2u, (4)

∇ · u = 0, (5)

where ix1
is the unit vector in the streamwise direction and Rδ = U∗0δ∗/ν∗.

The governing equations are solved numerically in a computational domain of
dimensions Lx1

, Lx2
and Lx3

in the streamwise, cross-stream and spanwise directions
respectively.

At the wall the no-slip condition is enforced:

(u1, u2, u3) = 0 at x2 = εη(x1, x3). (6)
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Having assumed the amplitude of the wall waviness to be much smaller than the
thickness of the laminar boundary layer (ε = ε∗/δ∗ � 1), boundary condition (6) can
be approximated as

(u1, u2, u3) = −εη(x1, x3)
∂

∂x2

(u1, u2, u3) + 0(ε2) at x2 = 0. (7)

Note that (7) is an approximation of the boundary condition (6) within the accuracy
of the numerical method employed to solve (4)–(5). The numerical scheme is second-
order accurate in space and in all the simulations ε has been taken to be smaller than
the first computational step in the x2-direction. At large distances from the wall the
flow field should tend to (−U∗0 cosω∗t, 0, 0). Hence, at x2 = Lx2

, where Lx2
is much

larger than one, a symmetry condition is imposed:

∂

∂x2

(u1, u3) = 0, u2 = 0, (8)

which is equivalent to requiring the vanishing of tangential stresses far from the
wall and imposing that the flow field far from the wall tends to (−U∗0 cosω∗t∗, 0, 0).
Moreover, the turbulent flow is assumed to be homogeneous in the streamwise and
spanwise directions and periodic boundary conditions are thus forced along the x1-
and x3-axes.

The numerical method solves the problem in primitive variables using standard
centred second-order finite difference approximations of the spatial derivatives, while
the time-advancement of Navier–Stokes equations employs a fractional-step method
extensively described by Kim & Moin (1985), Orlandi (1989) and Rai & Moin (1991).
The non-solenoidal intermediate velocity field is evaluated by means of a third order
Runge–Kutta scheme to discretize convective terms together with a Crank–Nicolson
scheme for the diffusive terms. The implicit treatment of the viscous terms would
require the inversion of large sparse matrices which are reduced to three tridiagonal
matrices by a factorization procedure with an error of order (∆t)3 (Beam & Warming
1976). Then, by forcing the continuity equation (5), a Poisson equation for the
pressure field is obtained which is readily solved by taking advantage of the imposed
periodicity in the x1- and x3-directions. More details on the numerical approach can
be found in Vittori & Verzicco (1998) where a comparison is also made between the
numerical results and some analytical solutions which hold for small or moderate
values of the Reynolds number Rδ (Blondeaux 1990; Vittori 1992). The satisfactory
agreement found by Vittori & Verzicco (1998) supports the reliability and accuracy
of the numerical approach.

The use of periodic boundary conditions in the homogeneous directions is justified
if the computational box is large enough to include the largest eddies in the flow.

The works by Blondeaux & Seminara (1979), Akhavan et al. (1991), Wu (1992),
Blondeaux & Vittori (1994) and Vittori & Verzicco (1998) suggest that the flow
structures, which tend to appear when transition to turbulence takes place, are
characterized by a length in the streamwise direction equal to about 12.56δ∗ and
a width in the spanwise direction of about 6.28δ∗. Then, these vortex structures
break, originating smaller vortices which dissipate because of viscous effects. Since,
as in Jimenez & Moin (1991), the goal here is to isolate the basic flow unit and to
study its morphology and dynamics, we aimed to keep the size of the computational
box as small as possible to reproduce the process of turbulence generation. On the
basis of preliminary numerical experiments, a set of runs has been made with a
box size equal to L∗x1

= 25.13δ∗ and L∗x3
= 12.57δ∗ in the streamwise and spanwise
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Figure 1. Instantaneous spatial velocity power spectra, along the (a) streamwise and (b) spanwise
directions at x2 = 2.5, t = 42.52π and Rδ = 800. The streamwise spectrum is averaged in the
spanwise direction and the spanwise spectrum is averaged in the streamwise direction (dotted
line, streamwise velocity component; solid line, vertical velocity component; dashed line, spanwise
velocity component).

directions respectively. For this box size, turbulence is generated and maintained
for Reynolds numbers in fair agreement with experimental values. Moreover the
average quantities, like velocity, turbulence energy and Reynolds stresses, agree fairly
well with experimental measurements (see Vittori & Verzicco 1998). For all the
simulations described in the present paper, the dimensionless vertical size of the
computational box has been fixed equal to L∗x2

= 25.13δ∗. At such distances from
the wall significant values of vorticity have never been detected. An estimate of the
box size in terms of wall units can be obtained using the time-averaged value of the
shear velocity predicted on the basis of Stokes’ (1855) solution. Indeed, experimental
data show that the wall shear stress in the intermittently turbulent regime has values
not much different from those characterizing the laminar solution. In the Reynolds
number range investigated here, it turns out that the length of the computational box
falls between 450 and 820 wall units depending on the Reynolds number, while its
width varies between 225 and 410 wall units. Such values are similar to those used by
Jimenez & Moin (1991) to study vortex structures in the wall layer for a steady flow.

In the computational box, 64×32×64 grid points have been used in the streamwise,
spanwise and vertical directions respectively. The mesh is uniform in the streamwise
and spanwise directions while in the vertical one a non-uniform mesh has been used
to cluster the grid points in the vicinity of the wall where gradients are expected to be
stronger. An example of the instantaneous streamwise and spanwise power spectra
is shown in figure 1 at the phase of the cycle when turbulence appears explosively
and the smallest vortices are generated. The plots of figure 1 are for Rδ = 800 and
show an acceptable drop-off at high frequencies, confirming that the smallest scales
are adequately resolved.

However, the results obtained show that the box is too small to adequately represent
all turbulence characteristics. Indeed, after averaging in the x1- and/or x3-directions
parallel to the wall, the computed quantities display a stochastic and intermittent
behaviour which is due to the limited size of the box in comparison with the
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largest vortex structures. The plots of figure 1, which show the instantaneous Fourier
transforms of the velocity component in the streamwise direction averaged in the
spanwise direction and vice versa, are examples of such behaviour. A similar problem
was faced by Jimenez & Moin (1991), who circumvented it by performing the
time average of spatially averaged quantities. In the present work a phase-average
value could be computed. However in the Reynolds number range investigated,
turbulence appears at different instants within the cycle and a phase-average procedure
would have implied averaging flow fields with different characteristics. Hence, in the
following, no phase-averaging is used, unless justified and explicitly specified.

To check that the limited size of the box does not affect the dynamics of the observed
vortex structures, some of the runs have have been repeated with larger values of L∗x1

and L∗x3
. In particular for Rδ = 800 results have been obtained with L∗x1

= 50.27δ∗ and
L∗x3

= 25.14δ∗ such that the length and width of the computational box are roughly
1290 and 640 wall units respectively. For the runs with the large computational
box, the number of grid points was more than doubled both in the streamwise and
spanwise directions and 192×96×64 grid points were used in the streamwise, spanwise
and vertical directions respectively. Figure 2 shows that the instantaneous two-point
spatial autocorrelation functions for the velocity field tend to vanish both for the
small and large boxes but the small box is not large enough for distant points to be
completely uncorrelated. In figure 2, the phases of the cycle when low-speed streaks
start to break up are considered and the autocorrelation functions are evaluated at
x2 = 2.5. Therefore, as in Jimenez & Moin (1991), the small computational box cannot
allow an accurate prediction of the high-order statistical quantities, even though it
can be used to isolate the basic process generating turbulence. On the other hand,
the instantaneous autocorrelation functions for the large box are almost zero at half
the computational domain and in this case the numerical predictions can be used to
investigate turbulence structure both near and far from the wall.

To support the reliability of the computations, the numerical results have been
compared with available experimental data. Accurate measurements are described
in Jensen, Sumer & Fredsoe (1989). In particular, we have chosen to compare our
numerical results with the data of tests nos. 5, 6 and 7 which are characterized
by sufficiently high Reynolds numbers (Rδ ≈ 740, 990, 1120) to be considered in the
intermittently turbulent regime but not so large as to require high computational
costs. Here, attention is focused on turbulence characteristics. Figures 3 and 4, where
the near-wall turbulent intensities are plotted at different phases of the cycle, show
a fair agreement between the computed and measured values. Figure 5, where the
predicted and measured time developments of the wall shear stress are plotted, further
supports the numerical procedure. It is worth pointing out that the experimental data
of figure 5 represent phase-averaged values while the numerical predictions are just
one realization of the phenomenon. The numerical predictions shown in figure 5(a)
are characterized by significant differences from cycle to cycle which are due to the
proximity of the Reynolds number to the critical value.

3. Discussion of the results
As pointed out in the introduction, in the oscillatory flow over a flat wall four

regimes can be identified: (i) the laminar regime; (ii) a disturbed laminar regime,
where small-amplitude perturbations appear superimposed on the Stokes flow; (iii)
an intermittently turbulent regime, where bursts of turbulence appear explosively at
the end of the accelerating phases and are sustained during the decelerating phases
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Figure 2. Two-point spatial autocorrelation functions along (a) the streamwise direction and (b)
the spanwise direction (small box, t = 42.52π); (c) the streamwise direction and (d ) the spanwise
direction (large box, t = 43.04π) at x2 = 2.5 and Rδ = 800 (dotted line, streamwise velocity com-
ponent; solid line, vertical velocity component; dashed line, spanwise velocity component). The
autocorrelation function along the streamwise direction is averaged in the spanwise direction and
vice versa. In both cases the plots span half the computational box domain.
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Figure 3. Comparison between computed and measured r.m.s. values of the streamwise velocity
component for Rδ ≈ 990 (Test no. 6 of Jensen et al. 1989). Phases of the cycle (a) 95◦, (b) 130◦,
(c) 163◦, (d ) 17◦, (e) 50◦, ( f ) 85◦ (dots, experimental data; solid line, numerical predictions).

of the cycle; (iv) a fully developed turbulent regime characterized by the presence of
turbulence throughout the whole cycle.

Here, computations are made to gain qualitative and quantitative information on
the vortex structures characterizing the flow for moderate values of the Reynolds
number, i.e. for Rδ falling in the first three regimes, and to better understand the role
of coherent structures in the transition from the laminar to the disturbed laminar
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Figure 5. Comparison between computed and measured (Jensen et al. 1989) wall shear stress.
(a) Rδ ≈ 740 (test no. 5), (b) Rδ ≈ 1120 (test no. 7) (dots, experimental data; solid line, numerical
predictions).

regime and from the disturbed laminar to the intermittently turbulent regime. No
results are available in the fully turbulent regime, because the computational costs
prohibit numerical simulations for large values of the Reynolds number.

Computed visualizations of the trajectories of passive tracers are used to ob-
tain preliminary information on the vorticity field. Even though the analysis of the
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trajectories of passive tracers cannot be used to definitely identify vortex structures,
flow visualizations by means of marker trajectories have been made to allow a direct
comparison between the numerical simulations and the experimental data of other
authors and in particular of Sarpkaya (1993). There are no well-established and
accurate quantitative results on turbulence structure in oscillatory boundary layers
at transitional and moderate values of the Reynolds number and a comparison of
the numerical results with previous experimental flow visualizations is necessary to
provide further support to the numerical procedure. In particular two techniques are
used. In the first one, tracers are released along a line at a fixed time interval ∆t and
then their motions are followed. This technique, which simulates the hydrogen bubble
technique, not only allows a large portion of the flow to be visualized, but can also
be used to obtain an immediate estimate of the velocity distribution along the line of
emission. In the second technique, numerical dye (tracer) is introduced at a fixed time
along a plane parallel to the wall thus following the experimental procedure used
by Sarpkaya (1993). Pictures taken at subsequent times allow the dye motions to be
identified and the presence of coherent vortices inferred.

Having obtained a qualitative picture of the flow structure, a quantitative investi-
gation is made of the coherent vortices, from velocity, pressure and vorticity fields
in the three-dimensional space and time. In particular, using the definition of a vor-
tex introduced by Jeong & Hussain (1995) for an incompressible flow, we identify
coherent vortex structures as connected regions with two negative eigenvalues of the
symmetric tensor D2 + Ω2 (D and Ω are the symmetric and antisymmetric parts of
the velocity gradient tensor respectively).

3.1. The disturbed laminar regime

For small values of the Reynolds number, vorticity has only the spanwise component
associated with the Stokes flow, except for the presence of small perturbations induced
by the presence of wall imperfections. However these perturbations remain very small
throughout the cycle and are proportional to ε. The analysis of the tracers does not
show any relevant vortex structure and the flow regime can be defined as laminar.
The flow remains laminar up to Rδ equal to about 100.

Then, for larger values of the Reynolds number, the resonance mechanism discussed
by Blondeaux & Vittori (1994) starts to appear and perturbations develop which are
forced by wall imperfections but are characterized by amplitudes which are much
larger than ε. Hence, when Rδ is larger than 100, the ‘disturbed laminar regime’
occurs. However the process is continuous and the strength of the flow perturbations
which are detected becomes relevant only when the Reynolds number is significantly
larger than 100.

To investigate the vortex structures which appear when resonance takes place and
to highlight the major role played by wall imperfections in triggering the growth of
flow perturbations when the Reynolds number falls in the disturbed laminar regime,
three wall configurations have been considered. The first one (denoted A) is that
used by Vittori & Verzicco (1998). In particular the wall profile A has two harmonic
components (N = 2). The first one is two-dimensional, i.e. it does not depend on
x3, and has the wavenumber characteristic of the most unstable two-dimensional
disturbance according to Blondeaux & Seminara (1979) (α1 = 0.5, γ1 = 0). The second
component has been chosen with the same spanwise spatial periodicity as that of
the three-dimensional perturbations which Akhavan et al. (1991) showed to have
the maximum growth rate when interacting with a pre-existing finite-amplitude two-
dimensional wave (α2 = 0, γ2 = 1). Moreover a1 = 1, a2 = 0.1 and ϕ1 = ϕ2 = 0.
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This set of parameters has been chosen since the analyses of Blondeaux & Vittori
(1994) and Akhavan et al. (1991) show that it is able to induce resonance and trigger
turbulence. Finally the value of ε has been set equal to 0.005, which is typical of the
imperfections for a mirror-shine smooth wall. The second wall configuration (denoted
B) is the sum of two oblique waves (N = 2), which are symmetric with respect
to the flow direction and characterized by streamwise and spanwise wavenumbers
equal to (α1, γ1) = (0.5, 1) and (α2, γ2) = (0.5,−1) respectively. Moreover a1 = a2 = 0.5
and ϕ1 = ϕ2 = 0. In this case the amplitude ε is equal to that of configuration A
(ε = 0.005). For such values of the parameters no resonance is expected to take place
(see figure 4 of Blondeaux & Vittori 1994). The third wall configuration (wall C) is
obtained setting N = 3 and ε still equal to 0.005. Moreover we fixed (α1 = 1, γ1 = 0),
(α2 = 0.5, γ2 = 0.866) and (α3 = 0.5, γ3 = −0.866) with a1 = 0.136, a2 = a3 = 0.5. In
this case only, the width Lx3

of the computational box has been set equal to 14.51.
These values have been chosen in an attempt to force a disturbance which should
be highly unstable and show an explosive growth according to the analysis by Wu
(1992) and Wu, Lee & Cowley (1993). For flows in the disturbed laminar regime, the
simulations were carried out till t = 12π, i.e. 6 cycles.

The presence of resonance for Rδ larger than 100 is supported by flow visualizations.
In fact, looking at the trajectories of tracers uniformly released at t = 10π along a
plane parallel to the wall located at x2 = 0.2 for Rδ = 500 and wall A, it is possible
to observe the formation of spanwise bands of tracers travelling in the streamwise
direction. The geometry and spacing of these bands suggest the presence of two-
dimensional perturbations with a streamwise wavelength equal to about 12.6δ∗, i.e.
the wavelength of the wall imperfections (see figure 6). However the presence of the
wall waviness alone cannot explain such large-amplitude waves which indeed are
triggered by wall imperfections but are then amplified by the resonance mechanism
described by Blondeaux & Vittori (1994).

Figure 7 shows the spanwise component Ω̃3 of the vorticity field at t = 11π, after
the subtraction of the vorticity Ω3 averaged over the plane (x1, x3) (Ω̃3 = Ω3 − Ω3),
for Rδ = 500 and wall A. The mean vorticity is removed to take away the vorticity
associated with the basic flow and to highlight the vorticity associated with the
perturbations. Well-developed spanwise vortices can be detected, the strength of
which is significantly larger than ε, which is the order of magnitude of the expected
vorticity perturbations induced by wall imperfections in the absence of any resonance
phenomenon. Further support to the analysis of Blondeaux & Vittori (1994) comes
from the observation that these vortices grow when resonance takes places, because
of an energy supply from the basic flow, and then they decay due to viscous effects
when resonance is no longer active. This result comes from an analysis of figure 8
where the vertically integrated specific vorticity O and its time derivative are plotted
versus time:

O =
1

Lx1
Lx3

∫ Lx1

0

∫ Lx2

0

∫ Lx3

0

√
Ω2

1 + Ω2
2 + Ω̃2

3 dx1 dx2 dx3. (9)

The function O is characterized by a rapid growth at t ∼ 0.5nπ which correspond
to the resonant phases predicted by Blondeaux & Vittori (1994) (see figure 5 of their
paper). Moreover, once created, vorticity does not disappear suddenly but is damped
by viscous effects as shown by Blondeaux & Vittori (1994) who investigated the
passage through resonance (see figure 8 of their paper).

The present results also support Akhavan et al.’s (1991) findings; the analysis of
the trajectories of the tracers for longer times has shown that three-dimensional
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Figure 6. Visualization at t = 10.80π of markers uniformly released at t = 10π and x2 = 0.2
(Rδ = 500 and wall A).
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Figure 7. Spanwise vorticity component Ω̃3 at t = 11π for Rδ = 500 and wall A. Isosurface for
|Ω̃3| = 0.1 (light surface, positive values; dark surface, negative values).

perturbations slowly grow as predicted by Akhavan et al. (1991). In fact figure 9
shows that for longer times the markers tend to assume a wavy configuration in the
spanwise direction (compare figure 6 with figure 9). We remind the reader that for
Rδ = 500 the amplification rate of the spanwise perturbations predicted by Akhavan
et al. (1991) is very small and this explains why it takes a long time to see a significant
spanwise waviness in the marker distribution. It is also worth pointing out that
notwithstanding the growth of three-dimensional perturbations, which is inferred by
the analysis of the trajectories of the tracers, no significant three-dimensional vortex
structure can be isolated when looking at the vorticity field up to t = 12π.



Coherent structures in oscillatory boundary layers 15

0.06

0.05

0.04

0.03

0.02

/

10.0π 10.5π 11.0π 11.5π 12.0π
t

(a) 0.15

0.10

0.05

0

–0.05

10.0π 10.5π 11.0π 11.5π 12.0π
t

(b)

d/

dt

Figure 8. (a) Specific vorticity O; (b) time derivative of the specific vorticity O
(Rδ = 500 and wall A).

0.30

0.25

0.20

0.15

0
2

4
6

8

10
12 25

20

15

10

5

0

x1

x3

x2

Figure 9. Visualization at t = 11.47π of markers uniformly released at t = 10π and x2 = 0.2
(Rδ = 500 and wall A).

On the other hand, for wall B, the values of Ω̃3 are of order ε and it can be inferred
that no resonance takes place. Moreover, for wall B, notwithstanding the presence of
a wall waviness as large as that of wall A, no significant pattern in the trajectories of
the tracers is observed.

The simulation carried out for Rδ = 500 and wall C does not show any growth of
significant flow perturbations either, thus indicating that the mechanism investigated
by Wu (1992) and Wu et al. (1993) does not operate for this value of the Reynolds
number. This finding is not surprising since the analyses carried out by Wu (1992)
and Wu et al. (1993) hold only for Rδ tending to infinity.

Similar results are found for other values of Rδ falling in the disturbed laminar
regime. In particular numerical simulations have been made for Rδ equal to 300
and 400, showing that the resonance mechanism becomes weaker when the Reynolds
number is decreased. Even though in the disturbed laminar regime the fluid motion
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Figure 10. Visualization at t = 24.98π of markers uniformly released at t = 24.5π and x2 = 0.1
(Rδ = 500 and wall D).

is still coherent and no turbulence is detected, the flow significantly differs from that
predicted by Stokes when appropriate wall imperfections are introduced.

The above numerical results seem to disagree with the experimental observations
of Sarpkaya (1993) who observed coherent three-dimensional vortex structures for
Rδ as small as 400 and turbulence for Rδ around 500. In particular for Rδ = 400
Sarpkaya (1993), looking at patterns formed by dye uniformly released on the cylinder
surface, observed one or more unevenly spaced low-speed streaks which remained
perfectly straight, smooth and parallel. For larger values of Rδ but still smaller than
500, the streaks became sinuous, interacted with each other and eventually broke
up, generating turbulence. This discrepancy between the numerical simulations and
the experimental data may be ascribed to the different amplitude of the external
disturbances present in the experimental apparatus with respect to the perturbations
induced by wall imperfections. Indeed, a numerical simulation carried out for Rδ = 500
and wall D, which is equal to wall A but with an amplitude ε which is an order
of magnitude larger (ε = 0.04), shows results which qualitatively agree with those
described by Sarpkaya (1993) and fall in the intermittently turbulent regime. Flow
visualizations performed following the motion of a uniform layer of tracers released
parallel to the wall show the formation of streamwise streaks which remain straight,
smooth and parallel for a long time (see figure 10) and then split into short segments
which in turn are lifted and break up. It is worth recalling that ε = 0.04 corresponds
to imperfections of a wall which is still flat from a macroscopic point of view.

Since the simulations provide the velocity and pressure fields in space and time, it
would seem appropriate to analyse in more detail the vortex structures characterizing
the flow at relatively low Reynolds numbers. However, as previously described, in
this range of Rδ the results and in particular the simulated vortex structures depend
on the characteristics of wall imperfections. To realize this, it is sufficient to compare
figure 7 with figure 11, where the spanwise vorticity component is plotted for the
same Reynolds number and the same wall configuration but for different values of the
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Figure 11. Spanwise vorticity component Ω̃3 at t = 11π for Rδ = 500 and wall D. Isosurface for
|Ω̃3| = 0.21 (light surface, positive values; dark surface, negative values).

amplitude ε of wall imperfections. In figure 7, which shows the results for ε = 0.005,
spanwise vortices can be recognized, while in figure 11, where ε is equal to 0.04, the
vorticity field is characterized by streamwise vortex structures. Moreover, an analysis
of the velocity field shows that for wall A the flow falls in the disturbed laminar
regime while for wall D it falls in the intermittently turbulent regime.

A detailed analysis of the velocity and vorticity fields is postponed to the following
section, where larger values of the Reynolds number are considered and the intermit-
tently turbulent regime takes place. In this regime the vortex structures which appear
and the characteristics of turbulence do not depend on the form and amplitude of
wall imperfections, which are necessary only to trigger transition and can then be
removed, once a statistically steady state is reached, without affecting the statistical
properties of the flow field.

3.2. The intermittently turbulent regime

3.2.1. Flow visualizations

The results by Vittori & Verzicco (1998) show that for wall A, the transition from
the disturbed laminar regime to the intermittently turbulent regime takes place when
Rδ is about 550. Moreover a preliminary set of runs has shown that for Rδ larger
than 550, wall imperfections can be removed, once the flow has attained a periodic
state, without affecting the average characteristics of velocity and vorticity fields.

Hence, let us start by looking at the results obtained for Rδ = 800 and wall A.
Of course the flow does not repeat exactly every half a cycle; however for the case
described above and for all the results described in the following, enough cycles
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(25 cycles) have been simulated to give some confidence that the features discussed
in the paper are representative of the events taking place in the computational box.
The flow visualizations allow a sequence of events to be identified similar to those
detected in steady wall turbulence. An example of the results is shown in figure 12
where the trajectories of tracers released from a single line at fixed time interval are
displayed. In these pictures the line of emission is located parallel to the plate and
normal to the flow, which is in the positive direction of x1. The distance d∗ of the
line of emission from the wall is equal to 0.1δ∗. Generally speaking, in the laboratory
experiments performed in steady boundary layers or in closed ducts, the wire (line)
shedding hydrogen bubbles (tracers) is located at a distance from the wall which is
usually measured in terms of the viscous length ν∗/u∗τ (u∗τ being the shear velocity).
In the present simulations the shear velocity u∗τ changes with time, hence the value of
the ratio d∗/(ν∗/u∗τ) also changes with time. Thus it appears more appropriate to scale
d∗ with δ∗. To provide the order of magnitude of the distance from the wall in terms
of the viscous length ν∗/u∗τ we have computed the ratio δ∗/(ν∗/u∗τ) where an overbar
denotes the average over the cycle. For Rδ = 800, δ∗/(ν∗/u∗τ) is found to be equal to
about 24, hence the tracers are released within the viscous sublayer at approximately
2.4ν∗/u∗τ .

Towards the end of the accelerating phase and in the early stages of flow deceler-
ation, the analysis of the tracer motions shows the existence of a spanwise distribution
of alternating zones of high- and low-speed fluid which develop close to the wall (see
figure 12a). Moreover, flow visualizations made by releasing a uniform layer of passive
tracers at t = 41.5π and x2 = 0.1 show that these large spanwise variations in the
streamwise velocity component are correlated with spanwise-periodic variations of
the spanwise velocity component which tends to create streamwise streaks of high
tracer concentration similar to the dye patterns observed by Sarpkaya (1993). This
clearly appears when the external flow starts to decelerate (see figure 13). As already
pointed out, the streaks form at a rather pronounced spanwise spacing, which remains
almost constant when the line of emission is moved in the vertical direction.

Streamwise filaments of low-speed fluid (streaks) with a fairly uniform transverse
spacing were first observed in the steady case by Ferrell, Richardson & Beatty (1955)
and concurrently by Hama (see Corrsin 1957). A subsequent systematic investigation
of the low-speed streak phenomena by Runstadler, Kline & Reynolds (1963) quantified
some of their characteristics. Since these pioneering works, low-speed streaks have
been investigated by many authors and they are now considered ubiquitous features of
turbulent boundary layers. Similar structures have also been observed more recently
by Sarpkaya (1993) in an oscillatory boundary layer. One of the main differences
between the structures observed in the Stokes layer and those in the steady boundary
layer is that the former take place at a particular phase of the cycle, while in steady
boundary layers low-speed streaks are randomly observed in time. Here, for Rδ = 800,
it has been observed that low-speed streaks start to appear toward the end of the
accelerating phases, as observed in the experiments by Fishler & Brodkey (1991), and
survive till the end of the decelerating phases, even though in the final period of their
life they oscillate and twist. In particular they tend to move toward each other, to
coalesce and to form single streaks which become sinuous (see figure 12b). Shortly
thereafter, the streaks begin to split into short segments which, in turn, are lifted. As
a consequence, the markers are spread into the upper layers of fluid (see figure 12c)
indicating the explosive generation of turbulence. The results from all the simulated
cycles are consistent with the ones described here, although there are some variations
of the relative strength of the different flow elements.
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Figure 12. Visualization of markers continuously released along the line x1 = 25.13, x2 = 0.1
(Rδ = 800 and wall A). (a) t = 42.17π; (b) t = 42.47π; (c) t = 42.52π.
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Figure 13. Visualization at t = 42.17π of markers uniformly released at x2 = 0.1 and t = 41.5π
(Rδ = 800 and wall A).

3.2.2. The vorticity field

As previously pointed out, access to velocity, pressure, and vorticity fields in space
and time allows a more detailed investigation of the flow close to the wall and a
clear picture of the vortex structures which generate the marker streaks and their
subsequent dynamics to be gained.

Figure 14 shows simultaneously the spanwise Ω̃3, vertical Ω2 and streamwise Ω1

vorticity components along with the streamwise velocity component at x2 = 0.163 (x∗2
equal to about 3.9ν∗/u∗τ) just before the end of the accelerating phase. Recall that Ω̃3

is the spanwise vorticity component after the subtraction of the vorticity averaged
over the plane (x1, x3). Likewise, ũ1 is the streamwise velocity component after the
subtraction of the velocity averaged over the plane (x1, x3).

Figure 14 shows that the low-speed streaks are related to significant values of Ω̃3,
which forms elongated vortex structures in the viscous sublayer (figure 14b). Indeed,
strong spanwise vorticity is induced close to the wall by the large vertical gradient
of the streamwise velocity. In the immediate vicinity of the wall ũ1 ∼ −x2Ω̃3 and the
contours of Ω̃3 mark the level of streamwise velocity at a fixed x2.

In the literature (Sendstad & Moin 1992), low-speed streaks are also associated
with significant values of the vertical component of vorticity which is generated by
the spanwise gradients of the streamwise velocity. In fact, close to the wall, large
contributions to Ω2 come from ∂ũ1/∂x3 and the Ω2 structures indicate the side ‘walls’
of the low-velocity streaks. Figure 14(c) shows that, to observe significant values of
Ω2, it is necessary to move quite far from the wall, i.e. outside the viscous sublayer.
Moreover, the analysis of the data shows that large values of the vertical component
of vorticity appear between the regions of high- and low-speed fluid.

In the past low-speed streaks were thought to be originated by pairs of counter-
rotating streamwise vortices located just outside the viscous sublayer. This idea has
recently been questioned. In the steady flow case, as discussed by Moin & Mahesh
(1998), the streamwise extent of the streamwise vortices outside the viscous sublayer
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Figure 14. Velocity and vorticity fields at t = 42.17π for Rδ = 800 and wall A. (a) Streamwise velocity
component ũ1 at x2 = 0.163. (b) Spanwise vorticity component Ω̃3. Isosurfaces for |Ω̃3| = 0.12.
(c) Vertical vorticity component Ω2. Isosurfaces for |Ω2| = 0.12. (d ) Streamwise vorticity component
Ω1. Isosurfaces for |Ω1| = 0.05. (Light surfaces, positive values; dark surfaces, negative values.)

is much shorter than the low-speed streaks. In Moin & Mahesh (1998) the long
streamwise length of the low-speed streaks appears to be due to a sequence of
streamwise vortices following each other, pumping high-speed fluid toward the wall
and low-speed fluid away from the wall (Sendstad & Moin 1992). An analysis of the
vorticity field, which leads to the visualizations depicted in figure 12, shows neither
the existence of long streamwise vortices nor the presence of a sequence of shorter
alternating streamwise vortices (see figure 14d ). Thus, it can be argued that low-speed
streaks are not necessarily associated with the existence of streamwise vortices of any
type. However, it should be noted that the results described so far have been obtained
using the small computational box. Numerical experiments with smaller and larger
boxes have shown that the small box captures the essential mechanism of turbulence
generation and maintenance. However, as previously discussed, the results obtained
(see also figure 2) show that the small box is not large enough to allow accurate
predictions of all turbulence characteristics. Hence for Rδ = 800 and wall A, a run
has been made doubling the size of the computational box both in the streamwise
and spanwise directions in such a way that L∗x1

and L∗x3
are approximately equal to

1290 and 640 average wall units respectively.
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To understand the process which leads to the appearance of the low-speed streaks,
attention has been focused on Ω̃3 which is plotted in figure 15 at different phases
of the cycle during the early stages of formation of the low-speed streaks. Positive
as well as negative patches of spanwise vorticity can be observed at t = 41.53π near
to the wall (see figure 15a). These vortices can be partly associated with the wall
imperfections; a careful analysis of figure 15(a) shows that the vortex structures have
their root at the crests and troughs of the wall waviness. As the flow decelerates,
spanwise vortices of the same sign become aligned (see figure 15b) and tend to
originate long vortex structures which are the starting point of the low-speed streaks
(see figure 15c). To follow the time development of the low-speed streaks, in figure 16
Ω̃3 is plotted at subsequent phases of the cycle. In figure 16(a), the low-speed streaks
formed by Ω̃3 are clearly detectable. The vortex structures appearing in figure 15(c)
grow and spread along the wall till the low-speed streaks become more evident.
Once formed low-speed streaks do not survive for a long time. Indeed, when the
flow deceleration starts, the vortex structures generating the low-speed streaks begin
to interact, sometimes becoming wavy. Then shortly after, they break into short
segments and lose their coherence (see figure 16b, c). The breakup of the low-speed
streaks starts at random locations (see figure 16b) and then it spreads along the
whole plane (see figure 16c). Later on, small-scale vortices are present in the whole
computational domain. Note that the break-up of the low-speed streaks does not
take place always at the same phase of the cycle; sometimes it starts just at the
beginning of flow deceleration, other times it takes place later, but always during
the decelerating phase of the cycle. All these phenomena are in agreement with the
dynamics of the tracers previously discussed referring to figures 12 and 14. Moreover,
the vorticity fields shown in figures 15 and 16 are qualitatively similar to those shown
in figure 14. Hence, it can be concluded that close to the wall the small and the large
computational boxes provide similar results. On the other hand, differences between
the results of the small box and those of the large box are found on moving outside
the viscous wall layer and analysing the development of the streamwise vorticity
component Ω1. When the fluid starts to accelerate, only incoherent blobs of vorticity,
generated by the burst events of the previous cycle, are present. Then, when the
low-speed streaks tend to form, some streamwise vortices are formed close to the wall
by the stretching and intensification of the incoherent vortex structures generated
during the previous decelerating phase. This stretching takes place because of the
large gradients in the vertical direction of the basic streamwise velocity component
(Batchelor 1967). On the other hand, the vortices which are far from the wall tend
to decay, being subject to a uniform translation. The streamwise vortices which form
close to the wall organize themselves in the plane (x1, x3) (see figure 17) forming a
sequence of vortices of alternating circulation aligned with the low-speed streaks and
pumping low-speed fluid from the wall towards the fast moving fluid. Hence, the
same basic process which is suggested to generate turbulence in steady flows can be
recognized (Sendstad & Moin 1992).

Since the analysis of tracer trajectories and of isovorticity surfaces may be con-
sidered inadequate in detecting vortices in an unsteady flow, we have computed the
eigenvalues of the symmetric tensor D2 +Ω2 and we have considered the regions with
two negative eigenvalues. As discussed by Jeong & Hussain (1995) these regions do
indeed correlate well with coherent vortex structures buried in the background vor-
ticity. Figure 18 visualizes an isosurface characterized by a negative value of λ2, which
is the second eigenvalue of the tensor D2 +Ω2 (λ2 = −0.0015). In figure 18 the same
structures appearing in figure 17 can be recognized. Moreover, computing the cross-
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Figure 15. Spanwise vorticity component Ω̃3 for Rδ = 800 and wall A. Isosurfaces for |Ω̃3| = 0.15
(light surface, positive values; dark surface, negative values). (a) t = 42.53π; (b) t = 42.60π;
(c) t = 42.66π.
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Figure 16. Spanwise vorticity component Ω̃3 for Rδ = 800 and wall A. Isosurfaces for |Ω̃3| = 0.15
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Figure 17. Streamwise vorticity component Ω1 at t = 42.82π for Rδ = 800 and wall A. Isosurfaces
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Figure 18. Isosurface of λ2. λ2 = −0.0015 at t = 42.82π for Rδ = 800 and wall A.

correlation coefficient of −λ2 with each vorticity component, the cross-correlation
between −λ2 and |Ω1| is found to be much higher than that between −λ2 and |Ω2|
or |Ω3|. It can be concluded that the dominant near-wall educed coherent structures
are highly elongated quasi-streamwise vortices. The vortices are of alternating sign,
as shown in figure 17, and partially overlap in the x1-direction in an almost ordered
array. Moreover, the eduction approach by Jeong & Hussain (1995) also does not
show the existence of hairpin vortices. Note also the lack of vortices having a stream-
wise length comparable to the length of the low-speed streaks. Finally, it is worth
pointing out that the vorticity field associated with the low-speed streaks does not
give rise to negative values of λ2 within the viscous sublayer and hence coherent
structures, as defined by Jeong & Hussain (1995), are absent here (Jeong et al. 1997).

3.2.3. Turbulence structure

To measure the spacing of the low-speed streaks many cycles have been simulated.
Then the spanwise distribution of ũ1 has been analysed. The quantity ũ1 is defined as
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Figure 19. Two-point spatial autocorrelation function along the spanwise direction (large box) at
x2 = 0.34, t = 42.87π and Rδ = 800. Dashed line, spanwise velocity component; solid line, vertical
velocity component; dotted line, streamwise velocity component.

u1− ū1 where ū1 is the value of u1 averaged on the (x1, x3)-plane. It has been observed
that the number of streaks depends on the phase of the cycle. The number of streaks
is indeed larger at the end of the accelerating phases of the cycle when streaks start to
appear. Then, some of them merge originating larger regions of low-speed fluid which
remain stable for a relatively long period of time before breaking and originating
small-scale vortices at the end of the decelerating phases, when bursts of turbulence
appear.

The average spacing of the streaks has been determined by computing the two-
point spatial auto-correlation of the streamwise velocity component ũ1 in the spanwise
direction. The analysis of the velocity field was made just before the break up of the
low-speed streaks. This procedure has shown that a reproducible mean spacing exists,
though there is a considerable variation in the spacing from cycle to cycle with a
standard deviation of spacing of about 50%. A typical instantaneous autocorrelation
function at x2 = 0.34 for Rδ = 800 is shown in figure 19; the values of the autocorre-
lation function averaged in the streamwise direction are plotted. Note that variations
of ũ1 in the streamwise direction are quite small (less than few per cent). The spacing
of the low-speed streaks is evaluated by performing an average over 13 cycles. The
results indicate that the average (spanwise) streak spacing corresponds approxima-
tively to 5.3δ∗. Relating this value to the viscous length ν∗/u∗τ , one readily finds about
127ν∗/u∗τ , which is a value close to the spacing observed in steady boundary layers. A
somewhat smaller value is obtained if the instantaneous shear velocity is used.

When the coherent vortex structures associated with the low-speed streaks break
up during the decelerating phases of the cycle, a large number of small vortices
is generated. It is interesting to notice that the kinetic energy of turbulence starts
to grow when the low-speed streaks appear. The strength of the coherent vortices
associated with the low-speed streaks increases and so turbulence energy and Reynolds
stresses grow too. Then the kinetic energy of turbulence attains its maximum when
the coherent vortex structures begin to break up. The generation of small vortices
implies large viscous effects and turbulence starts to damp. In figure 20 the vertically
integrated specific kinetic energy E of turbulence,

E =
1

Lx1
Lx3

∫ Lx1

0

∫ Lx2

0

∫ Lx3

0

1
2
((ũ1)

2 + (u2)
2 + (u3)

2) dx1 dx2 dx3, (10)

is plotted versus time. Looking at figure 16(a) where the spanwise vorticity component
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Figure 20. Specific kinetic energy E as defined in (10) (Rδ = 800 and wall A).

is plotted at t = 42.81π = 134.51 just before the maximum of E is attained, and at
figure 16(c), where the spanwise vorticity is plotted at t = 43.01π = 135.11 just after
the maximum of E, it can be verified that the damping of the turbulent kinetic
energy is associated with the breaking of the coherent vortex structures originating
the low-speed streaks.

To investigate the turbulence properties close to the wall, a statistical analysis of
the velocity field has been made. As previously pointed out, the time history of plane-
averaged quantities shows a stochastic and intermittent behaviour. The intermittency
exposes the limited size of the computational box with respect to the largest vortex
structures appearing in the boundary layer and the correspondingly small statistical
sample. The cancellation of fluctuations for the small box involves phase-averaging
the behaviour of a single quantity over a large number of cycles. The random spatial
occurrence of large vortex structures in a natural turbulent wall layer is replaced
here by a random occurrence during different cycles. However when the large vortex
structures break into smaller vortices the size of the latter is much smaller than the
computational box and a stochastic analysis of their characteristics can be attempted
by defining the fluctuating component of any quantity as the actual value minus its
plane-average value.

As experimentally observed by Hino et al. (1983), the probability density distri-
bution of the fluctuating component ũ1 of the streamwise velocity is skewed towards
the positive side during most of the decelerating phase when turbulence appears
(in discussing the distribution of ũ1, positive values mean values of ũ1 in the same
direction as the average value of u1 while positive values of u2 mean vertical velocities
in the upward direction). Moreover, the probability density distribution of the vertical
velocity component u2 turns out to be almost symmetric. Close to the wall and when
turbulence first appears, further inspection of the probability density distributions
classified according to the four categories of quadrants in the (ũ1, u2)-plane proposed
by Brodkey, Wallace & Eckelmann (1974) discloses that the probability density
distribution of ũ1 is skewed towards the positive values of ũ1 both when detecting
values of ũ1u2 > 0 and ũ1u2 < 0. On the other hand, the probability density distribution
of u2 is skewed towards the positive when ũ1u2 is positive (interactions), but it is
reversed when ũ1u2 is negative (ejection and sweep). Only when the two probabilities
are superimposed does the probability density distribution of u2 tend to become
symmetric (see figure 21). However, a more careful analysis of the conditioned
probability density function of u2 shows that the skewness towards the positive values
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Figure 21. (a) Unconditioned probability density functions of ũ1 and u2. (b) Conditioned probability
density functions of ũ1. (c) Conditioned probability density functions of u′2. (Rδ = 800, wall A,
x2 = 1.6, t = 42.47π.)

which is present for ũ1u2 > 0 is larger that the skewness towards the negative values
when ũ1u2 < 0. Since the unconditioned probability density function of u2 turns out
to be almost symmetric, it appears that not only are sweep events and outward
interactions more frequent than ejection events and wall-ward interactions but also
that sweep events tend to prevail on the outward interactions. This finding is confirmed
by an analysis of the distribution of the events in the (ũ1, u2)-plane. Moreover, because
of the continuity equation, which forces the plane-average value of u2 to be zero,
ejection events are less frequent but more violent that sweep events. A visualization
of an ejection event is shown in figure 22 where the effect of the upward fluid motion
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Figure 22. Visualization at t = 42.23π of markers uniformly released at x2 = 0.1 and t = 41.50π.
(a) Side view, (b) front view (Rδ = 800 and wall A).
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Figure 23. (a) Visualization at t = 41.7π of markers uniformly released at x2 = 0.1 and t = 41.50π.
(b) Streamwise vorticity component Ω1 at t = 41.7π. Isosurfaces for |Ω1| = 0.04 (light surface,
positive values; dark surface, negative values). (Rδ = 800 and wall A.)

on the passive tracers clearly appears. The markers are moved far from the wall
(see figure 22b) and simultaneously in the downstream direction (see figure 22a) by
an ejection event which takes place in a wall region identified by 0 < x1 < 15 and
9 < x2 < 12. A further ejection event appears around x2 = 3. However, no evidence
of coherent vortex structures associated with ejections, sweeps or interaction events
has been found by analysing the vorticity field. Looking at the patterns formed by
the passive tracers, uniformly released in a plane parallel to the wall during the final
part of the decelerating phases and the early part of the accelerating phases, the
tendency of the tracers to form arrow-shaped patterns is observed. These patterns, an
example of which is shown in figure 23(a), are the result of the presence near the wall
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Figure 24. Visualization at t = 41.13π of markers uniformly released at x2 = 0.1 and t = 40.50π
(Rδ = 800 and a flat wall).

of significant streamwise vortices similar to those shown in figure 17. As previously
pointed out, these vortices form because of the stretching and intensification of the
incoherent vortex structures generated by the breaking of the low-speed streaks (the
stretching being due to the large velocity gradient present near to the wall) and induce
large velocities which sweep the tracers away. Then secondary vorticity is generated
at the wall and creates a new vortex structure which is driven away from the wall
by the primary vortex. This process, in which a vortex near a no-slip wall induces
secondary vorticity of opposite sign at the wall, carries it away to generate a new
free vortex and then couples with it to form a rising pair, has been nicely observed
in two-dimensional computations of vortex dipoles moving towards a wall (Orlandi
1990). Eventually, the process of low-speed streak formation repeats again during the
following half-cycle.

3.3. Influence of the amplitude of wall imperfections

To show that in the intermittently turbulent regime the wall imperfections have
no influence on the phenomenon, a simulation has been carried out for the same
Reynolds number and a perfectly flat wall. The simulation started from a turbulent
flow field obtained for an imperfect wall and then setting ε equal to zero. An example
of the results obtained can be seen in figure 24 where the patterns formed by tracers
uniformly released in a plane parallel to the wall are shown at the same phase as in
figure 13. Some differences are present but the imperfect wall and the perfectly plane
wall give the same streak spacing, if the phase average over many cycles is computed.
Moreover, the gross features of the dynamics of the coherent vortex structures is
always similar.

Hence it can be concluded that wall imperfections play a minor role in the
intermittently turbulent regime where turbulence is self-sustaining. On the other hand,
wall imperfections (or other external sources of perturbations) are found to play a
fundamental role in the disturbed laminar regime. Indeed in the latter flow regime,
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their presence is necessary to trigger the instability of the flow and to continuously feed
the resonance mechanism. Moreover, the strength of the perturbations of the basic flow
depends on the amplitude of the wall waviness and on its form. This finding explains
why different experimentalists found different flow characteristics in this flow regime.

3.4. Results at higher Reynolds numbers

Up to now, results have been described for Rδ = 800. When the Reynolds number
is further increased, a larger number of vortices appear towards the end of the
decelerating phases and turbulence activity spans over larger times and larger areas.
However for the values of Rδ investigated here (up to 1200) these turbulent structures
do not survive during the accelerating phases and the flow relaminarizes during the
accelerating phases. Looking at the experimental results available in the literature it
can be inferred that to simulate turbulence throughout the cycle, it would be necessary
to consider values of the Reynolds number which cannot be simulated at present
because of the large computational costs.

4. Conclusions
In this paper we describe the results of numerical simulations of the boundary layer

generated close to a wall by a uniform oscillating pressure gradient (Stokes boundary
layer). The flow is studied for values of the Reynolds number falling in the disturbed
laminar and intermittently turbulent regimes. The wall is flat but with small imperfec-
tions which play a fundamental role in triggering transition to turbulence. The goal
is to investigate the quasi-coherent vortex structures which form close to the wall
and control momentum, mass and heat transfer. In the disturbed laminar regime the
simulated vortex structures depend on the characteristics of wall imperfections and no
general conclusion can be drawn. On the other hand, in the intermittently turbulent
regime, the coherent vortex structures are found to be independent of the characteris-
tics of wall imperfections. In the near-wall region, a sequence of events similar to those
detected in steady boundary layers has been observed. In particular low-speed streaks,
which start to appear towards the end of the accelerating phases, have been detected.
Then, these low-speed streaks twist, oscillate and eventually break, generating small
vortices which dissipate because of viscous effects. The analysis of the vorticity field
has also shown the existence of a sequence of short streamwise vortices of alternating
circulation pumping low-speed fluid far from the wall. Moreover, the present results
suggest that the streak instability mechanism is the dominant mechanism generating
and maintaining turbulence in oscillatory boundary layers. In fact no evidence of the
well-known parent vortex structures spawning offspring vortices is found.

The authors are grateful to Professor Mutlu Sumer who made available the exper-
imental data shown in figures 3, 4, 5. Many thanks are also due to Professor Roberto
Verzicco for helpful discussions on various aspects of the numerical approach. The
financial support of the University of Genova to one of the authors (P. C.) is gratefully
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